Content

Tutorial 4
---Chan Ki Fung

BACK

Questions of today

Note:

- I add the assumption $f(0) \neq 0$ to the second question. The case f has a zero of order m can be handled by considering f/z^m (and with a factor z^m in front of the infinite product).
- 1. Find all entire functions which are uniformly continuous.
- 2. Let f be an entire function with zeroes $\{a_n\}$ and $f(0)\neq 0.$ Then there exists an entire function g and a sequence such that nonnegative integers $\{p_n\}$ such that

Show that the product

Let Ω be the complement of a compact subset K of $\mathbb{C},$ and $\{a_n\}$ is an infinite sequence of points in Ω such that $\{a_n\}$ has no limit points in Ω and has no subsequence converging to infinity. Then there exists a holomorphic function

for all $n > N$. (We need also the n can be chosen uniformly on compact subsets of Ω) This would follow from the following lemma:

Hints & solutions of today

Lemma: $|a_n - b_n| \to 0$.

- 1. Show that $f(z+h) = f(z)$ for all small h and all z . Hence show that $\{z: f'(z) = f'(0)\}$ has a limit point at the origin.
- 2. Similar as the Weierstrass theorem, we need to show that for any z ,

(Proof of the lemma): If not, then by passing to a subsequence, we can find some $\epsilon > 0$ such that

 $|a_n - b_n|$

for all n . Let A denotes the set $\{a_n\}$, the above says that

 $\mathop\mathrm{dist}(A,K) \geq \epsilon.$

Therefore, A has no limit point on K . On the other hand, the assumption says that A has no limit point in $\Omega.$ We thus know that A has no limit points in $\mathbb C.$ Any bounded infinite subset of $\mathbb C$ has a limit point, so A must be unbounded. But this would imply

that $\{a_n\}$ has a subsequence converging to the infinity, which contracdicts to the assumption. Therefore $|a_n - b_n| \to 0$.

We only remains to show that f is bounded at infinity, but note that $\{a_n\}$ is bounded because it has no subsequence converging to the infinity. Therefore, for z large enough, we have

3. We make some simplifications. First, if the zero set is finite, then we can use a polynomial function, so we may assume the zero set is infinite. On the other hand, if $a\in\Omega$ not inside the zero set of $f.$ We can consider the change of variable $z \mapsto \frac{1}{z-a},$ and assume the complement of Ω is bounded, we thus need to prove the following: ¯ *a_n*. But we also know that
 $|1 - E_{p_n}(w)|$

take $p_n = n - 1$.

Difications. First, if the zero set is

zero set is infinite. On the other

of variable $z \mapsto \frac{1}{z-a}$, and assumplement of a compact subs

g:

mplement of a ∣ ¯

4. You may need the following estimates:

and

diverges.

$$
f(z)=e^{g(z)}\prod_{n=1}^{\infty}E_{p_n}\Big(\frac{z}{a_n}\Big)
$$

- 3. Let Ω be an open subset of $\mathbb C.$ Let $\{a_n\}$ be a sequence in Ω without limit points. Show that there exists a holomorphic functions $f:\Omega\to\mathbb{C}$ whose zeroes are precisely the $\{a_n\}.$
- 4. (Blaschke Products) Let $D = D_1$ be the open unit disc, and let $\{a_n\}$ be a sequence of nonzero complex numbers in D_{\cdot} Suppose

$$
\sum_{n=1}^\infty (1-|a_n|)<\infty.
$$

$$
f(z)=\prod_{n=1}^\infty\frac{a_n-z}{1-\overline{a_n}z}\frac{|a_n|}{a_n}
$$

defines a holomorphic function on D whose zeroes set are exactly $\{a_n\}.$

- 5. Let f be an entire function of finite growth order, show that f assumes each complex value with at most one exception. (You can use the last homework in HW2 to show that if the growth order is not an integer, then f assumes each complex value an infinite number of times) $\,$
- 6. Let f and g be entire functions of finite order λ . Let $\{a_n\}$ be a sequence such that $f(a_n)=g(a_n).$
	- a) Suppose $\sum |a_n|^{-(\lambda+\epsilon)} = \infty$ for some $\epsilon > 0,$ show that $f = g.$
	- b) Find all entire functions f of finite order such that $f(\log n) = n.$

$$
\sum |1-E_{p_n}(\frac{z}{a_n})|
$$

converges. We know, however, for each $z\in\mathbb{C}$, we have

$$
\left|\frac{z}{a_n}\right|<\frac{1}{2}
$$

except finitely many a_n . But we also know that

$$
|1-E_{p_n}(w)|\leq c|w|^{p_n+1}.
$$

We can then simply take $p_n = n-1.$

$$
f:\Omega\to\mathbb{C}
$$

such that the zero set of f is exactly $\{a_n\}$, and f is bounded at infinitely.

We now prove the above statement. For each n , we choose $b_n \in K$ so that $|a_n - b_n|$ is the smallest. $\left| \left(a_{n}-b_{n}\right| \leq\left| a_{n}-b\right|$ for any $b\in K$) We then define

$$
f(z)=\prod_{n=1}^{\infty}E_n\Bigg(\frac{a_n-b_n}{z-b_n}\Bigg).
$$

Since E_n has a simple zero at 1 , our f , if well defined, has a zero at a_n for each n . As in Question 2, we just need to show that for some zn

$$
\left|\frac{a_n-b_n}{z-b_n}\right|<\frac{1}{2}
$$

$$
\left|\frac{a_n-b_n}{z-b_n}\right|<\frac{1}{2}
$$

for all n .

N N (We need also the *n* can be chosen uniformly on compact subsets of *M* is
ne following lemma:
\n
$$
a_n - b_n | \rightarrow 0
$$
.
\n
$$
a_n - b_n |
$$
\n
$$
|a_n - b_n|
$$
\n
$$
|a_n - a_n|
$$
\n<math display="</i>

$$
\sum_{n=2}^{\infty} \frac{1}{(\log n)^k}
$$

$$
\frac{(a_n + |a_n|z)}{a_n - |a_n|^2 z} = \left| \frac{\left(\frac{a_n}{|a_n|^2} + \frac{1}{|a_n|}z\right)}{\frac{a_n}{|a_n|^2} - z} \right|
$$
\n
$$
\leq \frac{2(1 + |z|)}{1 - |z|}
$$
\nfrom some polynomial *g*. Then apply
\nwe integer *k*, the series\n
$$
\sum_{n=2}^{\infty} \frac{1}{(\log n)^k}
$$

for $\frac{1}{2} < |a_n| < 1$.

5. If f has no zero, then $f = \exp(g)$ from some polynomial g . Then apply fundamental theorem of algebra.

6. For part b), show that for any positive integer k , the series