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Questions of today

Note:

I add the assumption  to the second question. The case  has a zero of order  can be
handled by considering  (and with a factor  in front of the infinite product).

1. Find all entire functions which are uniformly continuous.
2. Let  be an entire function with zeroes  and . Then there exists an entire function  and a

sequence such that nonnegative integers  such that

3. Let  be an open subset of . Let  be a sequence in  without limit points. Show that there exists
a holomorphic functions  whose zeroes are precisely the .

4. (Blaschke Products) Let  be the open unit disc, and let  be a sequence of nonzero complex
numbers in . Suppose

Show that the product

defines a holomorphic function on  whose zeroes set are exactly .
5. Let  be an entire function of finite growth order, show that  assumes each complex value with at most

one exception. (You can use the last homework in HW2 to show that if the growth order is not an integer,
then  assumes each complex value an infinite number of times)

6. Let  and  be entire functions of finite order . Let  be a sequence such that .
a) Suppose  for some , show that .
b) Find all entire functions  of finite order such that .

Hints & solutions of today

1. Show that  for all small  and all . Hence show that  has a limit
point at the origin.

2. Similar as the Weierstrass theorem, we need to show that for any ,

converges. We know, however, for each , we have

except finitely many . But we also know that

We can then simply take .
3. We make some simplifications. First, if the zero set is finite, then we can use a polynomial function, so

we may assume the zero set is infinite. On the other hand, if  not inside the zero set of . We can
consider the change of variable , and assume the complement of  is bounded, we thus need
to prove the following:

Let  be the complement of a compact subset  of , and  is an infinite sequence
of points in  such that  has no limit points in  and has no subsequence converging
to infinity. Then there exists a holomorphic function

such that the zero set of  is exactly , and  is bounded at infinitely.

We now prove the above statement. For each , we choose  so that  is the smallest.
(i.e.  for any ) We then define

Since  has a simple zero at , our , if well defined, has a zero at  for each . As in Question 2, we
just need to show that for some 

for all . (We need also the  can be chosen uniformly on compact subsets of ) This would follow
from the following lemma:

Lemma: .

(Proof of the lemma): If not, then by passing to a subsequence, we can find some  such
that

for all . Let  denotes the set , the above says that

Therefore,  has no limit point on . On the other hand, the assumption says that  has no
limit point in . We thus know that  has no limit points in . 
Any bounded infinite subset of  has a limit point, so  must be unbounded. But this would imply
that  has a subsequence converging to the infinity, which contracdicts to the assumption.
Therefore .

We only remains to show that  is bounded at infinity, but note that  is bounded because it has no
subsequence converging to the infinity. Therefore, for  large enough, we have

for all .
4. You may need the following estimates:

and

for .
5. If  has no zero, then  from some polynomial . Then apply fundamental theorem of algebra.
6. For part b), show that for any positive integer , the series

diverges.
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